
Math 429 - Exercise Sheet 9

1. We already saw the root decomposition of sln (it is called “type A”). Work out the root
decomposition of g ∈ {o2n+1, sp2n, o2n} (which are called “types B,C,D”, respectively) by starting
from the Cartan subalgebra of g consisting of diagonal matrices.

Solution. We begin by setting g = o2n. We denote as A = (a1, . . . , an) the 2× 2 block-diagonal
matrices whose kth block is [

0 ak
−ak 0

]
, (1)

for some ak ∈ C. Let h be the toral subalgebra which consists of all matrices A = (a1, . . . , an) as
above. A basis for the dual h∗ is given by the linear maps αk : A = (a1, . . . , an) 7→ ak.
The common eignvectors for the adjoint action of h are described as follows. Let

C1 =

[
1 i
i −1

]
, C2 =

[
1 −i
−i −1

]
, C3 =

[
1 −i
i 1

]
, C4 =

[
1 i
−i 1

]
.

For every pair 1 ≤ r < j ≤ n and k = 1, 2, 3, 4, let Ck
(r,j) be the 2×2 block matrix having the matrix

Ck in the (r, j)th block and −(Ck)T in the (j, r)th block. Then for every A = (a1, . . . , an) ∈ h we
have

[A,Ck
(r,j)] = Ck

(r,j) ·


i(ar + aj) k = 1

−i(ar + aj) k = 2

i(ar − aj) k = 3

−i(ar − aj) k = 4

. (2)

Then we have the decomposition in adh-eigenspaces

o2n = (o2n)0
⊕

1≤r<j≤n,k=1,2,3,4

CCk
(r,j), (3)

where CCk
(r,j) is the eigenspace associated to the eigenvalue ±i(αr ± αj) (with signs according to

(2)), and (o2n)0 is the centralizer of h in g. Finally, for dimensional reasons in (3), we have

(o2n)0 = h,

so that h is maximal as a toral subalgebra. Thus (3) is the root decomposition of o2n.

Let g = o2n+1. A Cartan subalgebra t of o2n+1 is given by block diagonal matrices having n
consecutive 2× 2 blocks of the form (1), and a 1× 1 block which we set to be 0. Then, every root
for o2n is also a root for o2n+1, and there are 2n more roots which we now describe. The first set
of n eigenvectors is given by matrices having

B1 =

[
1
i

]
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in entries (2k, 2n+1) and (2k+1, 2n+1), and having −BT
1 in entries (2n+1, 2k+1) and (2n+1, 2k).

The second set of n eigenvectors is given by matrices having

B2 =

[
1
−i

]
in entries (2k, 2n+1) and (2k+1, 2n+1), and having −BT

1 in entries (2n+1, 2k+1) and (2n+1, 2k).
The corresponding eigenvalues are iαk and −iαk, with the same notations as above. Once again
we deduce from the eigenspace decomposition just described that t is in fact a Cartan subalgebra.

Let g = sp2n. Recall that elements X ∈ g are of the form

X =

[
A B
C −AT

]
where B and C are symmetric matrices. We take the Cartan subalgebra h consisting of diagonal
matrices in sp2n. Let αk ∈ h∗ be the functional which takes the kth entry in the diagonal, for
k = 1, . . . , n.
Let Ek,l denote the matrix whose only nonzero entry is a 1 in position (k, l). Then for 1 ≤ k < l ≤ n[

0 Ek,l + El,k

0 0

]
,

[
0 0

Ek,l + El,k 0

]
are eigenvectors for the eigenvalues αk + αl and αk + αl respectively. Matrices of the form[

Ek,l 0
0 −El,k

]
,

for k < l are eigenvectors for the eigenvalues αk − αl. Finally,[
0 Ek,k

0 0

]
,

[
0 0

Ek,k 0

]
are eigenvectors for the eigenvalues 2αk and −2αk respectively. As before we deduce from the
eigenspace decomposition just described that h is in fact a Cartan subalgebra.

2. Compute explicitly the sl2-triples associated to the root decompositions of o2n+1, sp2n, o2n you
found in the previous part.

Solution. We begin by setting g = o2n, and we choose the trace form tr(XY ) as a s.i.b.f.. With
the same notations as above, we compute the sl2 triple associated to the root α = i(αr + αj) ∈ h∗

(the other ones being analogous). The matrix

hα =
−i

2

0, . . . ,

rth position︷︸︸︷
1 . . . ,

jth position︷︸︸︷
1 , . . . , 0


is such that

tr(hα · (a1, . . . , an)) = i(aj + ar) = α((a1, . . . , an)).

for all (a1, . . . , an) ∈ h. Moreover,

(α, α) = tr(hα · hα) = α(hα) = 1.
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Following Proposition 19 in the Lecture notes, we set Hα = 2hα. The root space associated to the
root α is CC1

(r,j), and the one associated to the root −α is CC2
(r,j). Then we choose Eα = C1

(r,j)
and we compute

(C1
(r,j), C

2
(r,j)) = tr(C1

(r,j) · C
2
(r,j)) = 8.

Thus Proposition 19 of the Lecture notes tells us to set Fα = −i
8 C2

(r,j), and (Eα, Hα, Fα) is the sl2
triple.

In the case g = o2n+1, we take the same s.i.b.f. and we get analogous computations as for o2n.
The dual elements to the additional roots ±αk are

h̃±αk
= ± i

2

0, . . . ,

kth position︷︸︸︷
1 , . . . , 0

 .

Let g = sp2n. We compute a sl2 triple associated to the root α = i(αk +αl) for k ̸= l by means
of the s.i.b.f. tr(XY ). The equality of linear operators on h

tr

(
i

2

[
Ek,k + El,l 0

0 −Ek,k − El,l

]
· −

)
= i(αk + αl)(−)

and the equality of numbers

tr

(
i

2

[
Ek,k + El,l 0

0 −Ek,k − El,l

]
· i
2

[
Ek,k + El,l 0

0 −Ek,k − El,l

])
= 2i

tell us to set

Hα =

[
Ek,k + El,l 0

0 −Ek,k − El,l

]
.

Next we take a nonzero vector in the root space for the root α

Eα =

[
0 Ek,l + El,k

0 0

]
,

and we look for the normalization for a vector in the root space associated to −α. Explicitely, we
have

tr

([
0 Ek,l + El,k

0 0

]
· −i

2

[
0 0

Ek,l + El,k 0

])
= −i =

2

(α, α)
,

and we set

Fα =
−i

2

[
0 0

Ek,l + El,k 0

]
.

3. Show that any 3-dimensional complex semisimple Lie algebra is isomorphic to sl2.

Solution. Let h be a Cartan subalgebra of g, which exists as a maximal toral subalgebra. Since
the center of the semisimple Lie algebra g is trivial, one can find a non zero root α in the root
decomposition with respect to h. By dimensional reasons, the sl2 triple associated to α provides
an isomorphism sl2 ∼= g.
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4. Show that the root spaces of any complex semisimple Lie algebra g satisfy

[gα, gβ] = gα+β

whenever the roots α, β satisfy α+ β ̸= 0 (the inclusion ⊆ is obvious, it’s ⊇ that’s tricky).

Solution. We already know that [gα, gβ] is contained in the one dimensional subspace gα+β.
Thus we have to show that for all roots α, β such that α + β is a nonzero root, [gα, gβ] ̸= 0. Let
Sα = ⟨Eα, Hα, Fα⟩ ∼= sl2 be the sl2 triple associated to the root α by Proposition 19 in the Lecture
notes, and let K =

⊕
i∈Z gα+iβ. Of course only finitely many summands will be non-zero. Observe

that K is a Sα submodule of g. In order to prove that K is irreducible we use the following fact,
which is easy to check.

Lemma 1. Let V be a sl2 representation. The number of irreducible summands in the decomposition
V ∼= L(n1)⊕ · · · ⊕ L(nk) is

k = dimV1 + dimV0

where Vj = {v ∈ V |Hv = jv}.

According to Proposition 20 in the Lecture notes, each summand gα+iβ is a one dimensional weight
space associated to the integral weight

(iα+ β)(Hα) = 2i+ β(Hα).

It follows that only one of 0 and 1 can occur as weight. Thus the above Lemma implies that K is
irreducible. In particular, the adjoint action of gα maps gβ onto gα+β.

5. Using the result below as a black box, show that indeed the elements Hα defined in Lecture do
not depend on the choice of s.i.b.f. on a complex semisimple Lie algebra g.

Solution. Assume that the Lie algebra g is simple. We know that any pair of s.i.b.f.’s (−,−) and
(−,−)′ are equal up to a scalar multiple

(−,−) = λ(−,−)′. (4)

Let Hα and H ′
α be the elements defined in the Lecture notes w.r.t. the forms (−,−) and (−,−)′

respectively. More precisely

Hα =
2

α(hα)
hα and H ′

α =
2

α(h′α)
h′α

where the elements hα and h′α are defined by (hα,−) = α(−) = (h′α,−)′. It follows from (4) that
h′α = λhα, and then Hα = H ′

α. Finally, if the Lie algebra g is semisimple, Lemma 5 in Lecture
8 of the Lecture notes tells us that we can decompose it as a sum of simple Lie algebras, and
the statement (*) below implies that we can perform the above proof on each simple summand
separatedly.

(*) If g = g1 ⊕ · · · ⊕ gk with g1, . . . , gk simple, show that any Cartan subalgebra in g is the direct
sum of a collection of Cartan subalgebras in g1, . . . , gk. In this case, also conclude that the root
decomposition of g is the corresponding direct sum of the root decompositions of g1, . . . , gk.

4



Hi all,
I am writing this post because I want to point out a mistake that I made while talking with some
of you.
Let h be a (non maximal) toral subalgebra of a Lie algebra g. By Proposition 16 in the Lecture
notes, we have an eigenspaces decomposition

g = g0
⊕
λ∈h∗

gλ, (5)

but the dimensions of the gλ‘s is not one in general. This is a coarser decomposition, and
here is an example by Andrei.
Let g = sl4 and let h be the one dimensional toral subalgebra consisting of matrices

x 0
0 x

−x 0
0 −x

 . (6)

The decomposition (5) is then

sl4 = (sl4)0 ⊕ (sl4)1 ⊕ (sl4)−1,

where the summands are described as follows.

• (sl4)0 is the 7 dimensional centralizer of h, given by block matrices of the form

[
A 0
0 D

]
in

sl4.

• (sl4)1 is the 4 dimensional eigenspace consisting of matrices of the form

[
0 B
0 0

]
. The associ-

ated eigenvalue sends the matrix (6) to 2x.

• (sl4)−1 is the 4 dimensional eigenspace consisting of matrices of the form

[
0 0
C 0

]
. The

associated eigenvalue sends the matrix (6) to −2x.

If you go through the proof of Proposition 20 in the lecture notes, you can see that the maximality
of the toral subalgebra is actually needed. Indeed, the restriction of our s.i.b.f. to g0 is going to be
non degenerate, but the further restriction to the toral subalgebra will be degenerate. As a result,
the dual hα to a given root α (defined in paragraph 9.4) will not belong to the toral subalgebra in
general, and Proposition 19 fails.
In any case, this remark does not change the solution of the first exercise in Sheet 9. Finding enough
(one dimensional) root spaces allows one to conclude that dim g0 = dim h in (5), thus implying that
the toral subalgebra h is maximal.

Sorry for the possible confusion, I hope things are clear now. I wish you a happy Easter and a nice
break,
Niccolò
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